Breve storia della fisica delle particelle 2

La Fisica delle particelle elementari

HOME PAGE

I LEPTONI

I QUARK

I COLORI

LE INTERAZIONI

 LA SCHERMATURA

IL MASCHERAMENTO

LA SIMMETRIA ELETTRODEBOLE

L'UNIFICAZIONE

 CONCLUSIONI

GLOSSARIO

BIBLIOGRAFIA

LINKS

FORUM

Indice Breve Storia della fisica delle particelle 

Enrico Fermi

.

Particelle e Cosmologia

 

Il Tevatron del Fermilab

 

oltre la teoria standard:

 

C'è un limite alla comprensione?

 


Le Scienze on line

Galileo - giornale di scienza e problemi globali


 

Large Hadron Collider

 

E-mail

 

Le News dell' INFN

 

Breve Storia della Fisica delle Particelle


La carica elettrica

Siamo dunque arrivati al 1913 e a questo punto conosciamo l'elettrone negativo, e-, il fotone γ e il protone, che si suppone sia il nucleo dell'atomo di idrogeno.
Determinata mediante l'esperienza di Millikan, quella dell'elettrone è negativa e vale 4,8 * 10-19 coulomb. Nel seguito questa carica elementare e verrà quasi sempre considerata come un'unità, cioè attribuiremo la carica - 1 all'elettrone misureremo tutte le altre cariche in funzione di questa. Ogni quantità di elettricità è la somma di un numero intero di tali cariche elementari; è questo il primo passo verso la quantizzazione, cioè verso un modo di vedere le cose come somma di elementi ultimi e indivisibili, i quanti. Un quanto è il valore indivisibile più piccolo possibile attraverso il quale possa mostrarsi un parametro qualsiasi. Poiché è sempre molto piccolo, questo aspetto discontinuo della natura è assolutamente impercettibile alla scala dell'esperienza quotidiana, il che ha fatto a lungo pensare che la materia fosse continua. Ma quando si prosegue l'analisi passando alla scala microscopica e ricercando i componenti più minuti della materia, non si misura una decrescita regolare e si osserva invece una serie discreta di valori separati da salti o discontinuità.
Robert Andrews Millikan (1868-1953)
Perché ogni atomo sia neutro in condizioni normali, occorre supporre che il nucleo abbia una carica elettrica che compensi quella degli elettroni periferici; il protone deve quindi avere la stessa carica dell'elettrone, ma con segno opposto. Quando a causa di una collisione l'atomo perde uno dei suoi elettroni periferici, che come abbiamo visto sono ad esso debolmente legati, sembra che trasporti una carica apparente positiva: in queste condizioni si dice che l'atomo è ionizzato o che costituisce uno ione positivo. Gli ioni presentano notevole affinità chimica, cioè reagiscono facilmente con altri ioni dando luogo a svariati composti chimici di fondamentale importanza; va però notato che la vita sarebbe impossibile in un ambiente in cui tutti gli atomi fossero ionizzati.
Il fotone, elettricamente neutro, non è deviato dai campi elettrici o magnetici come lo è l'elettrone; tuttavia è in grado di provocare interazioni elettromagnetiche poiché è il veicolo del campo elettrico che circonda ogni carica. Il fotone trasporta quindi un quanto del campo elettromagnetico da un punto all'altro alla velocità della luce (c) tra due particelle elettricamente cariche.

La massa
 
Le particelle in generale possiedono inerzia dato che possono essere accelerate o rallentate secondo le leggi della meccanica, il che porta a dire che hanno una massa. Perché? Non lo sappiamo, come non sappiamo se questa massa "inerte" coincide con la massa pesante che è sensibile alla gravitazione, come vorrebbe il principio einsteiniano di equivalenza tra inerzia e gravitazione.
Nulla permette di concludere che le particelle subatomiche subiscano gli effetti della gravitazione universale, che potrebbe essere un effetto che nasce con una certa complessità di struttura, come la vita. Il suo effetto è così debole rispetto a quello delle altre forze che animano l'ambiente quantistico, che il protone più lento dovrebbe percorrere migliaia di chilometri prima di vedere la sua traiettoria abbassarsi di un micron nel campo gravitazionale terrestre, e occorrerebbe anche che si muovesse in un vuoto assai spinto per evitare le collisioni con le molecole d'aria. Tuttavia, un esperimento eseguito nel 1965 ha dimostrato che i neutroni estremamente lenti prodotti da un reattore nucleare sono deviati verso il basso per effetto dell'attrazione gravitazionale e che questa deviazione è in perfetto accordo con il valore di g (accelerazione di gravità) determinato a livello macroscopico.
  Albert Einstein (1879-1955)
Einstein ha anche postulato che la massa è l'equivalente dell'energia mediante una delle più celebri formule di tutte le scienze E = m c2 , secondo la quale l'energia (E) che un corpo può liberare annichilandosi è uguale al prodotto della sua massa (m) per il quadrato della velocità della luce (c). E' quindi d'uso comune esprimere masse ed energie con lo stesso sistema di unità.
L'energia di un sistema è la possibilità di produrre lavoro che è immagazzinata in esso, come quella della polvere da sparo, quella di una molla compressa o di un veicolo lanciato a grande velocità. Un fascio di protoni di un grande sincrotrone può immagazzinare 3000 joule di radiazione pura, una quantità notevole nell'ambito della radioattività, ma piccola rispetto a una potenza elettrica equivalente di 3 chilowatt, potenza che corrisponderebbe al caso in cui questo fascio fosse consumato ogni secondo.
L'energia acquistata da un elettrone accelerato da un campo elettrico di 1 volt è l'elettron-volt (eV) che vale  1,6 * 10-19 joule; i suoi multipli sono il MeV (106 eV) e il GeV, o BeV, (109 eV ). La massa equivalente all'energia di 1 MeV si potrà scrivere nella forma 1 MeV / c2 = 1,78 * 10-27 grammi, e in questo sistema quella dell'elettrone risulta me = 0,5 MeV / c2 . L'intuizione non può farsene immagine alcuna perché per ottenere un milligrammo di elettroni occorrerebbe ammassarne 1024 , un milione di miliardi di miliardi! Attualmente è abituale esprimere le masse direttamente in energia equivalente, cioè in MeV o in GeV, trascurando così il termine 1 / c2 .
Ma l'elettrone ha veramente una massa, o essa non è semplicemente il peso dell'energia che contiene? Qual è la massa dell'elettrone "nudo"? Se gli togliamo tutte le proprietà energetiche che potrebbero dargli una massa apparente, l'elettrone diventa "fisicamente" inesistente. Conserva la massa? Ecco uno dei problemi più difficili della fisica, perché, se è possibile giustificare una differenza di massa relativa tra due particelle grazie al giuoco di una differenza di energia, ciò non è possibile per la massa assoluta di una particella elettricamente carica; vediamo ora di darne una spiegazione.
Non è possibile considerare l'elettrone come un punto geometrico, cioè come un nulla perfetto, perché in esso il campo elettrico risulterebbe infinito. Ma se è leggermente esteso, la carica cerca di respingere se stessa e tende a espandersi a meno che una forza contraria non le si opponga per mantenere la coesione;  ma questa "autoforza" non potrebbe che immagazzinare una autoenergia infinita, dando così all'elettrone una massa infinita!
Cosa pensare di questa serie di infiniti, e fino a quale distanza minima le leggi dell'elettromagnetismo restano valide? Si è giunti a 10-14 cm con il muone, e anche a 10-15 cm con il protone senza constatare alcuna anomalia, spingendo così ai limiti del possibile il concetto di punto elettrico. Cosa accade a distanze ancora minori, e distanze minori hanno senso? Ma il fatto che l'elettrone abbia una massa non può essere trascurato in alcun modo, e ci resta perciò la seguente definizione: l'autoenergia elettromagnetica è infinita, ma è infinita anche la massa "nuda" e ciò che si misura ne è la differenza.
Il fatto che il numero di particelle diverse sia finito e che si possa identificarle ritrovandole con regolarità nelle reazioni nucleari ci prova che la massa deve essere un numero quantico che può assumere solo valori discreti, quelli che si trovano nella natura. Ma qual è la legge universale che regola la scala delle masse, e perché certe cifre piuttosto che altre? Dalla scoperta del discontinuo, gli scienziati si sforzano di rispondere a questa domanda. Quanto al protone esso è duemila volte più pesante dell'elettrone, pesa cioè 938,1 MeV / c2 .
Il fotone ci fornisce il primo esempio di particella senza massa poiché viaggia alla velocità della luce, limite assoluto della relatività einsteiniana al quale non si può né accelerare né rallentare. dato che la massa cresce con la velocità, si può dire che un corpo accelerato fino alla velocità della luce avrà una massa infinita, anche se la velocità della luce è una velocità asintotica per cui è necessario un tempo infinito per raggiungere questo stato.
Non si può dire se la nozione di massa nulla ha senso fisico, perché anche se il fotone avesse una massa infinitesima la sua velocità resterebbe così prossima al valore assoluto di Maxwell e di Einstein che non sarebbe possibile rivelarne la differenza.

James Clerk Maxwell (1831-1879)
Il fotone è il quanto del campo elettromagnetico, il che significa, ad esempio, che tra un pezzetto di ferro e una calamita l'azione avviene a distanza mediante l'emissione e la ricezione di questi pacchetti di energia. Dato che non ha massa, la sua energia è concentrata in una vibrazione e può assumere una serie continua di valori. Il fotone non è quindi quantizzato in se stesso, come la carica elettrica, ma lo è la sua emissione da parte degli atomi. il corpo emettitore può lasciare andare solo fotoni la cui energia assume soltanto una serie discontinua di valori. Occorre fare una distinzione tra i numeri quantici, parametri che esistono soltanto in forma intera e indivisibile, e il quanto di campo o di energia che può assumere tutti i valori ma che è quantico per il suo aspetto corpuscolare e per la quantizzazione della sua emissione.
 

L'energia e il momento
 
L'energia totale di una particella è data dalla somma dell'energia cinetica dovuta al movimento, che si esprime con m v2 / 2  come nella meccanica classica, e dell'energia equivalente alla sua massa a riposo, che si esprime mediante la formula einsteiniana E = m c2 . Se la particella è molto veloce, è necessario applicare a queste formule le correzioni della relatività, che appesantiscono i corpi, e distinguere la massa a riposo m0 dalla massa apparente in movimento m. Talvolta invece dell'energia si preferisce utilizzare un'altra variabile, la quantità di moto p, che è il prodotto della massa per la velocità,  p = m v; questa variabile, che è una quantità vettoriale a differenza dell'energia che è una quantità scalare, ha il vantaggio di non richiedere la distinzione tra massa a riposo e massa in movimento in quanto le correzioni relativistiche risultano automaticamente comprese nell'espressione della velocità.
L'energia totale di un corpuscolo sarà quindi (1 / 2) m v2 + m0 c2 , e quella di un insieme di particelle sarà la somma dell'energia totale di ciascun componente, dato che le energie si sommano. Ci soffermiamo su queste definizioni perché il concetto di energia domina tutta la meccanica quantistica con il principio fondamentale della conservazione, grazie al quale l'energia totale di un sistema prima di una reazione si ritrova interamente nei prodotti finali; l'energia non può infatti essere creata, e quella contenuta nella polvere da sparo passa al proiettile lanciato al momento della combustione.
La quantità di moto che abbiamo definito p (= m v) si conserva anch'essa durante una reazione. Se le energie sono espresse in eV o in MeV, le quantità di moto si esprimono in eV / c o in MeV / c.
L'altra forma di movimento, la rotazione, si presenta sia come momento cinetico di una particella rispetto a un'altra, sia come rotazione di una particella su se stessa; nel primo caso si ha propriamente il momento orbitale (chiamato spesso momento angolare), nel secondo caso si ha il momento intrinseco  indicato normalmente con il termine inglese spin (da to spin = ruotare). Una rotazione è individuata da un vettore perpendicolare al piano della rotazione e di lunghezza proporzionale alla velocità di rotazione, diretto nella direzione del pollice della mano destra quando l'indice è curvato nella direzione del movimento. Il valore della rotazione che è possibile osservare è quindi relativo alla direzione sulla quale la si proietta.
I momenti cinetici di rotazione (momenti orbitali) sono numeri quantici (l'energia e la quantità di moto non lo sono), il che significa che il più piccolo momento cinetico orbitale possibile vale h / 2 π , e che ogni altro momento orbitale è un multiplo intero di questo valore elementare come 0, h/2 π, 2h/2 π  o, più in generale, come lh/2 π dove l è un numero qualsiasi che può assumere soltanto valori interi. Basta quindi considerare h / 2 π ( che si indica con ) come unità dei momenti cinetici per poter stabilire che essi possono assumere soltanto valori compresi nella successione dei numeri interi 0, 1, 2, 3, o l.
I momenti cinetici intrinseci, gli spin, hanno in più la proprietà molto strana che la loro più piccola unità non è   ma  / 2; quindi, quando uno spin vale s, s può assumere soltanto valori interi o seminteri come 0, 1/2, 1, 3/2 ecc.
Quando si scoperse che l'elettrone ruotava su se stesso e che perciò possedeva uno spin, si constatò che quest'ultimo, valendo 1/2, poteva assumere solo due valori + 1/2 e - 1/2. La scoperta di variabili a due valori è tipicamente quantistica e non ha equivalenti in meccanica classica dove lo spazio ha tre dimensioni. A questo punto si può fare un'analogia tra spin e carica elettrica considerata come una specie di spin che vale + e o - e a seconda che le particelle siano positive o negative.
 

a cura di Pio Passalacqua 

indice
 

Filmati